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Abstract

Graph neural networks (GNNs) have achieved
remarkable success, yet most are developed un-
der the in-distribution assumption and fail to
generalize to out-of-distribution (OOD) environ-
ments. To tackle this problem, some graph in-
variant learning methods aim to learn invariant
subgraph against distribution shifts, which heav-
ily rely on predefined or automatically generated
environment labels. However, directly annotating
or estimating such environment labels from biased
graph data is typically impractical or inaccurate
for real-world graphs. Consequently, GNNs may
become biased toward variant patterns, resulting
in poor OOD generalization. In this paper, we
propose to learn disentangled invariant subgraph
via self-supervised contrastive variant subgraph
estimation for achieving satisfactory OOD gener-
alization. Specifically, we first propose a GNN-
based invariant subgraph generator to disentangle
the invariant and variant subgraphs. Then, we es-
timate the degree of the spurious correlations by
conducting self-supervised contrastive learning
on variant subgraphs. Thanks to the accurate iden-
tification and estimation of the variant subgraphs,
we can capture invariant subgraphs effectively
and further eliminate spurious correlations by in-
verse propensity score reweighting. We provide
theoretical analyses to show that our model can
disentangle the ground-truth invariant and vari-
ant subgraphs for OOD generalization. Extensive
experiments demonstrate the superiority of our
model over state-of-the-art baselines.
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1. Introduction
Graph is ubiquitous in our daily life, which has been widely
used to represent the complex relationships between enti-
ties in many fields, including social network (Qiu et al.,
2018; Li et al., 2019), knowledge representation (Wang
et al., 2017), recommendation systems (Wu et al., 2022b;
Li et al., 2021a), multimedia (Hudson & Manning, 2019),
computer vision (Zellers et al., 2018), natural language pro-
cessing (Marcheggiani & Titov, 2017), etc. Among these
popular applications, graph-level prediction tasks constitute
a major branch. Generally speaking, the label for a graph
depends on the information in its critical subgraph (i.e., the
part that has invariant and truly predictive relations to the
label in the task), rather than the whole graph (Luo et al.,
2020; Yu et al., 2021; Fan et al., 2022). For example, the sol-
ubility of one molecule can be determined by the predictive
functional group, rather than the molecular scaffold (Duve-
naud et al., 2015; Hu et al., 2020). The label of one graph
from the MNIST superpixel dataset (Dwivedi et al., 2023;
Fan et al., 2022) has deterministic and invariant relations
with the digit subgraph, rather than the background sub-
graph (Figure 1). Several representative works (Ying et al.,
2018; Luo et al., 2020) are developed to explore capturing
such critical subgraphs for learning graph representations ef-
fectively, which can largely improve graph-level prediction
performance.

Despite their remarkable progress, the existing approaches
are generally built upon the in-distribution (I.D.) hypoth-
esis, namely the testing and training graphs are sampled
from an identical distribution. Yet the graph data genera-
tion mechanism in real-world scenarios is uncontrollable
and unobservable (Bengio et al., 2019), so that the distribu-
tion shifts can widely exist, making the out-of-distribution
(OOD) generalization become one of the most crucial issues
to be handled (Li et al., 2022b). The existing subgraph-
based graph methods fail to capture critical subgraphs due
to lacking OOD generalization ability, whose performance
can degenerate significantly under distribution shifts. Al-
though several pioneering works (Wu et al., 2022c;a; Li
et al., 2022d; Yang et al., 2022; Li et al., 2023b) have been
proposed to handle graph distribution shifts via learning en-
vironment invariant subgraphs (which are defined as critical
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subgraphs that have invariant relations to the labels in any
environment) against distribution shifts, they heavily rely
on the predefined or automatically generated environment
labels, i.e., multiple training environments. However, the
environment labels are unavailable in most scenarios and
directly annotating or generating environment labels is also
impractical or inaccurate, especially in the graph dataset
with severe bias (Fan et al., 2022; Qi et al., 2022), which
largely limits these methods to capture the truly invariant
subgraphs for OOD generalization.

To address this issue, we study the problem of handling
graph distribution shifts with severe bias by explicitly es-
timating environment-related variant patterns and further
discovering invariant subgraphs for OOD generalization,
which remains largely unexplored in the literature due to
the following challenges:

• It is highly non-trivial to disentangle invariant and vari-
ant subgraph patterns from their complex interactions
within input graphs.

• It is challenging to estimate the degree of spurious corre-
lations between the variant subgraphs and labels, since
the variant subgraphs reflect the environment-related
information.

• It is also challenging to learn invariant subgraphs based
on the estimated degree of spurious correlations for
OOD generalized predictions.

In this paper, we propose a novel inVarIant subgraph learn-
ing based on VAriance Contrastive Estimation (VIVACE)
method, which is able to capture invariant subgraphs for
achieving satisfactory OOD generalization under distribu-
tion shifts with severe bias. Specifically, we first propose an
invariant and variant subgraph identification module to dis-
entangle potentially invariant and variant patterns for input
graphs. Then, we find that the variance information behind
graph data is also important and should not be directly ig-
nored as in most existing literature. So we propose a variant
subgraph contrastive estimation module to explicitly model
the degree of the spurious correlations between variant sub-
graphs and labels with self-supervised contrastive training,
which is useful for predicting the graph labels under dis-
tribution shifts. Finally, we propose an inverse propensity
weighting based invariant subgraph prediction module to
reweight the invariant subgraph predictions for eliminating
the spurious correlations and achieving OOD generalization.
In this way, our VIVACE method can capture and utilize
invariant subgraphs with stable power to make predictions
under distribution shifts with severe bias. We provide com-
prehensive theoretical analyses to show that our proposed
method can disentangle ground-truth invariant and variant
subgraphs for achieving OOD generalization with a strong

Figure 1. Example: the critical subgraph (i.e., digit subgraph, de-
noted by the bold lines) has truly predictive relations with the label
(i.e., the digit) in the MNIST superpixel dataset (Fan et al., 2022;
Dwivedi et al., 2023).

guarantee. We conduct extensive experiments to demon-
strate the superiority of our method over state-of-the-art
baselines.

The contributions of our work are summarized as follows:

• We propose learning invariant subgraph via variant sub-
graph contrastive estimation, which can handle graph
distribution shifts with severe bias. To the best of our
knowledge, this is the first work to study how to explic-
itly utilize the variant subgraphs to facilitate accurate
identification of invariant subgraphs under distribution
shifts.

• We propose three mutually promoted modules to dis-
entangle invariant and variant subgraphs, estimate the
degree of spurious correlations, and make predictions
based on the invariant subgraphs.

• We theoretically prove that our method can disentangle
the ground-truth invariant and variant subgraphs which is
a significant step towards OOD generalized predictions.

• Extensive experiments on several graph classification
benchmark datasets demonstrate the superiority of our
proposed method over state-of-the-art baselines.

The rest of the paper is organized as follows. We first
formulate the problem in Section 2. In Section 3, we present
the details of our proposed VIVACE method. We present
the experimental results to show the effectiveness of the
method in Section 4, including quantitative comparisons,
ablation studies, hyper-parameter sensitivity, etc. We review
the related works in Section 5. Finally, we conclude this
work in Section 6.

2. Problem Formulation
The OOD generalization under distribution shifts on graphs
can be formulated as:
Problem 1. The out-of-distribution generalization on graphs
is to find an optimal graph predictor f∗(·) that maps input
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graph G to the label y and performs well on all environments
E :

f∗(·) = argmin
f

sup
e∈E

R(f |e), (1)

where R(f |e) = Ee
G,y[ℓ(f(G), y)] is the risk of the predic-

tor f on the environment e, and ℓ denotes a loss function. We
further decompose f(·) = w ◦ h, where h(·) is the encoder
that maps input graph into the d-dimensional representation,
and w(·) is the classifier.

Following the literature (Li et al., 2022b), we make the
assumption:

Assumption 1. Given input graph G, there exists an invari-
ant subgraph G∗

I satisfying:
a. Invariance assumption: ∀e, e′ ∈ E , P e(y|G∗

I) =

P e′(y|G∗
I).

b. Sufficiency assumption: y = wI(hI(G
∗
I)) + ϵ, ϵ ⊥ G,

where hI denotes a graph encoder, wI is the classifier, ⊥
indicates statistical independence, and ϵ is random noise.

The invariance assumption means that there exists a sub-
graph inside the input graph that has invariant relations to
the label across different environments. The sufficiency as-
sumption means that the invariant subgraph has sufficient
predictive capability for predicting the graph label. Overall,
the graph OOD generalization problem can be solved by
finding the invariant subgraph for the input graph.

3. Method
In this section, we introduce the details of our proposed
VIVACE, which mainly consists of three key modules: in-
variant & variant subgraph identification module, variant
subgraph contrastive estimation module, and inverse propen-
sity weighting based invariant subgraph prediction module.
The framework of VIVACE is shown in Figure 2.

3.1. Invariant & Variant Subgraph Identification

The graph invariant learning literature (Li et al., 2022d; Fan
et al., 2022; Wu et al., 2022c) generally assumes that each
graph G consists of an invariant subgraph GI ⊂ G (which
is dominant to the label in the task and also has invariant
relations to the label across different environments), and a
variant subgraph (which could form spurious correlations
and have variant relations with the label in different envi-
ronments). Since variant subgraph is the complement of
invariant subgraph in terms of the input graph, the accu-
rate identification and estimation for variant subgraph can
promote the modeling for invariant subgraph.

Given one input graph G = (X,A), where X is the node
feature matrix and A is the adjacency matrix of G, we first
adopt the proposed invariant subgraph generator Φ(·) to dis-
entangle the invariant pattern in G under distribution shifts,

so the invariant and variant subgraphs can be obtained:

GI = Φ(G), GV = G\GI , (2)

where Φ(·) is instantiated as a learnable edge mask matrix
M on G. Therefore,

GI = (X,M⊙A), GV = (X, (1−M)⊙A), (3)

Here, we obtain the edge mask matrix M with a learnable
GNN instead of directly learning the edge mask for each
graph independently. It is because this design can identify
the invariant patterns in a global view shared across the
entire dataset and also easily generalize to handle unseen
test graphs without retraining (Li et al., 2022d; Fan et al.,
2022; Wu et al., 2022c). Specifically, each entry Mi,j of
the edge mask matrix is calculated:

Mi,j = Sigmoid
(
MLP

(
[Z

(m)
i ,Z

(m)
j ]

))
, Z(m) = GNNM(G),

(4)
where Z(m) is the node embedding for calculating the edge
mask and MLP(·) is a multilayer perceptron. Finally, we
can disentangle the invariant subgraph GI,i and variant sub-
graph GV,i for the i-th input graph Gi of the whole dataset1.
We use soft edge weights to decompose input graph into in-
variant and variant subgraphs instead of hard splits, which is
common in the literature for better optimization (Fan et al.,
2022; Wu et al., 2022c). The Sigmoid function is employed
to project the mask values into the interval (0, 1), indicating
the probability of the edge being classified into invariant
subgraph.

3.2. Variant Subgraph Contrastive Estimation

Since GNNs tend to exploit the spurious correlations be-
tween the variant subgraphs and the labels to make predic-
tions, which leads to poor OOD generalization, the existing
literature aims to encourage GNNs only focusing on in-
variant subgraphs but ignoring the variant subgraphs. For
achieving such a goal, they rely on the ideal predefined or au-
tomatically generated multiple environments for training. It
is because only when we can explicitly observe environment-
discriminative features among multiple environments, we
can capture the variant subgraph that has variant correlations
under different environments, so that we can disregard such
variant subgraph but in turn capture the invariant subgraph
that has invariant relationships between predictive graph
structural information and the label for OOD generalization.

However, when the training graph data is with severe bias
(e.g., imbalanced and less diverse), it is nearly impossible
to obtain ideal multiple environments for learning invariant
subgraphs. The variant pattern can not be fully disregarded
from the invariant pattern (Qi et al., 2022), so that the per-
formance in unseen testing graphs with distribution shifts is

1Note that for simplification, we omit the index i when there is
no ambiguity.
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Figure 2. The framework of the proposed method VIVACE. Training Stage: Given the input graph dataset, the invariant subgraph
generator Φ(·) first disentangles the invariant subgraph GI and variant subgraph GV for each graph G. Then, the variant subgraphs
are utilized for estimating the degree of the spurious correlation in a self-supervised contrastive manner. Finally, the invariant subgraph
predictions are reweighted based on the accurate estimation of the spurious correlations between the variant subgraphs and labels, so as to
eliminate the spurious correlations for OOD generalization. Testing Stage: We directly adopt the optimized invariant subgraph generator
Φ∗ and predictor f∗

I to make OOD generalized predictions ŷ = f∗
I (Φ

∗(G)).

not stable. Therefore, in this module, we propose a novel
strategy to explicitly estimate the degree of the spurious
correlations between the variant subgraph GV and its label
y for each input graph G, i.e., p(y|GV ).

Let fV = wV ◦ hV denote the variant subgraph predictor
mapping the variant subgraph into the corresponding pre-
dicted label, which consists of the variant subgraph encoder
hV to learn representations and variant subgraph classifier
wV that makes predictions based on the learned represen-
tations. Since the invariant subgraph is truly predictive to
the label, namely fully including the label information, the
variant subgraph captures the environment-related informa-
tion that is not available as the supervisions for training hV .
Therefore, we propose the following training objective with
self-supervisions:

ℓV,ssl(Φ, hV ) =
1

|Y |

|Y |∑
k=1

ℓssl(Φ, hV ; k)+αVar (ℓssl (Φ, hV ; k)) .

(5)
Here Y denotes the label set of the graph dataset, ℓssl is
the contrastive loss for training the identification and pre-
diction of the variant subgraph, and Var(·) denotes the vari-
ation. More specifically, ℓssl(Φ, hV ; k) is defined as the

contrastive loss for the graphs whose label is k, i.e.,

ℓssl(Φ, hV ; k)

= − 1

Tk

∑
yi=k

log
exp ϕ(hV (GV,i), hV (G′

V,i))∑
yj=k exp ϕ(hV (GV,i), hV (G′

V,j))
,

(6)

where Tk is the number of training graph whose label is k
and N is the total number of training graph in the dataset.
Note that

∑|Y |
k=1 Tk = N . G′

V,i is the augmented graph of
GV,i, where we adopt common graph augmentation strate-
gies (You et al., 2020). This objective can maximize the
agreement between GV and G′

V . ϕ is the cosine similarity
with temperature τ , i.e., ϕ(a,b) = COSINE(a,b)/τ and
COSINE(a,b) = a⊤b/(∥a∥2 ∥b∥2).

However, only utilizing the self-supervised contrastive loss
in Eq. (6) to train the variant subgraph encoder is not enough,
since the invariant patterns will also be captured by the en-
coder during training. Therefore, inspired by the invariant
learning literature (Krueger et al., 2021; Qi et al., 2022),
we adopt the variation of the contrastive loss functions on
all groups of graphs divided by the labels as the regular-
izer to encourage the encoder hV only capturing the variant
patterns. Intuitively, this regularizer can help the encoder
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ignore the divergence among different groups but focus on
their consistency. Since the training graphs are divided
into different groups according to their labels, the invariant
patterns that fully reflect the label information will be disre-
garded and only the variant patterns will be captured by the
variant subgraph encoder hV .

For better clarifications, we further explain how to prevent
GV from including invariant information. Rather than only
optimizing the contrastive loss Eq. (6), we optimize the
contrastive learning objective Eq. (5) with the second vari-
ance term to achieve this goal (where the contrastive loss
in Eq. (6) is only the first term), as shown in Algorithm 1.
The second variance term in Eq. (5) is proposed to mini-
mize the difference (variance) among the contrastive loss
from all GV with different labels 1, 2, . . . , |Y |, where |Y |
is the number of unique labels. If GV contains the invariant
information with label by mistake, the variance term will in-
crease since there exists a significant difference among label
k and the other labels 1, . . . , k − 1, k + 1, . . . , |Y |. There-
fore, when the second variance term is properly optimized,
it can encourage GV to exclude invariant information to the
label for achieving a minimum variance term. Finally, it will
lead the variant subgraph encoder to capture the subgraph
that only contains the variant subgraph.

Based on the trained variant subgraph encoder hV , we fur-
ther train the variant classifier wV via the generalized cross
entropy (GCE) loss (Lee et al., 2021; Fan et al., 2022) to fit
the spurious correlations of the variant classifier:

ℓV (Φ, fV ) = GCE(y, wV (hV (GV ))) =
1− (wy

V (fV (GV )))q

q
,

(7)
where wy

V (fV (GV )) means the predicted probability on the
label y, i.e., the softmax output of the y-th dimensional-
ity in practice. And q ∈ (0, 1] is a hyperparameter that
controls the degree of fitting the spurious correlations. Fi-
nally, we can rely on the trained variant subgraph predictor
fV = wV ◦ hV to accurately estimate the degree of the
spurious correlations between the variant subgraph and its
label p(y|GV ), whose implementation will be introduced in
the next module.

3.3. Invariant Subgraph Prediction via Inverse
Propensity Weighting

Although we do not have any annotations to specify the
variant subgraph in the dataset, we are able to estimate
the relations between the variant subgraph and the label,
which can largely help to learn accurate relations between
the invariant subgraph and the label for OOD generalization.
Specifically, we adopt propensity score techniques in causal-
ity (Jung et al., 2020; Seaman & Vansteelandt, 2018; Qi
et al., 2022) to reweight the invariant subgraph predictions
for eliminating the spurious correlations. Let fI denote the

invariant subgraph predictor mapping the invariant subgraph
into the corresponding predicted label. We adopt the fol-
lowing inverse propensity weighted (IPW) loss (Jung et al.,
2020; Seaman & Vansteelandt, 2018; Qi et al., 2022) to
optimize the invariant subgraph predictor:

ℓI(Φ, fI) =
∑
G

1

P (y|GV )
· CE(y, fI(Φ(G))), (8)

where CE is the standard cross-entropy loss, and the propen-
sity score function p(y|GV ) (Fan et al., 2022; Qi et al., 2022)
is calculated by the following equation:

P (y|GV ) =
CE(y, fV (GV ))

CE(y, fI(Φ(G))) + CE(y, fV (GV ))
. (9)

Intuitively, for the input G, we expect the invariant subgraph
generator Φ(·) and predictor fI(·) can capture the invariant
ground-truth relation p(y|Φ(G)) for OOD generalization.
Therefore, we need to explicitly estimate the degree of the
spurious correlations between the variant subgraph and the
label:

p(y|GV ) = p(y|G\Φ(G)). (10)

If p(y|GV ) is large, the Eq. (9) can under-weight the pre-
diction loss to reduce the over-large spurious correlations.
And a small p(y|GV ) means the variant subgraph has very
few impacts on the prediction under distribution shifts, so
the prediction loss should be up-weighted to encourage the
invariant subgraph generator and predictor for capturing
invariant patterns and improving OOD generalization.

For the optimization, we jointly optimize the self-supervised
contrastive objective in Eq. (5), the supervised objectives in
Eq. (8) and Eq. (7) as follows:

Φ∗, f∗
I , f

∗
V = argmin ℓI(Φ, fI)+ℓV (Φ, fV )+λℓV,ssl(Φ, hV ).

(11)

3.4. Optimization Procedure

We present the pseudocode of VIVACE in Algorithm 1 to
show the training procedure.

At the testing stage, we directly adopt the optimized Φ∗ to
capture the invariant subgraph for each input testing graph
Gte and further feed it into optimized f∗

I to make prediction
as follows:

ŷ = f∗
I (Φ

∗(Gte)). (12)

Since the predictions only depend on the subgraphs that have
invariant relations with the labels, the OOD generalization
performance can be largely improved.

3.5. Theoretical Analyses

We theoretically demonstrate that the proposed VIVACE
model can achieve OOD generalization by disentangling the
ground-truth invariant and variant subgraphs.
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Algorithm 1 The training procedure of VIVACE.
Input: The graph dataset
Output: An optimized invariant subgraph generator Φ(·) and
predictor fI(·) mapping each graph to its label

1: while not converge do
2: for sampled minibatch B of the graph dataset do
3: for each graph G and the corresponding label y in B do
4: Generate the edge mask matrix M by Eq. (4).
5: Generate the invariant subgraph GI and the variant

subgraph GV by Eq. (3).
6: end for
7: Calculate the contrastive learning objective by Eq. (5).
8: Calculate the objective of variant subgraph predictor by

Eq. (7).
9: Obtain the propensity score function for reweighting by

Eq. (9).
10: Calculate the objective of invariant subgraph predictor

by Eq. (8).
11: Obtain the overall objective by Eq. (11).
12: Update model parameters by backpropagation.
13: end for
14: end while

Theorem 1. Denote the optimal invariant subgraph gen-
erator Φ∗ that disentangles the ground-truth invariant sub-
graph G∗

I and variant subgraph G∗
V given the input graph

G, where G∗
I satisfies Assumption 1 and denote the comple-

ment as G∗
V = G\G∗

I . Assume the second variance term of
Eq. (5) is minimized, we have that the first contrastive loss
term is minimized iff the invariant subgraph generator Φ
equals Φ∗.

The proof is also shown in Appendix. The theorem shows
that our proposed method can identify the ground-truth in-
variant and variant subgraphs by the variance contrastive es-
timation for accurately modeling the degree of the spurious
correlations and further eliminating the spurious correlations
to achieve OOD generalization.

3.6. Complexity Analysis

We provide the detailed time complexity analysis of the
proposed VIVACE method as follows. The time complex-
ity of VIVACE is O(|E|d + |V |d2), where |V | and |E|
indicate the number of nodes and edges of the input graph,
respectively, and d is the dimensionality of the representa-
tions. Specifically, we use GCN (Kipf & Welling, 2017), a
message-passing GNN, to instantiate the GNN components
in our method, which has a complexity of O(|E| d+ |V | d2).
We disentangle the invariant and variant subgraphs by gen-
erating mask for the existing edges of the input graph, so
the time complexity is O(|E| d+ |V | d2). The variant sub-
graph contrastive estimation module and inverse propensity
weighting based invariant prediction module do not intro-
duce a higher time complexity. Therefore, the time complex-
ity of our proposed VIVACE method is comparable with
the baselines, demonstrating its promising efficiency.

4. Experiments
In this section, we conduct extensive experiments to verify
that our VIVACE method can effectively handle distribu-
tion shifts even on the severely biased graph datasets by
capturing the invariant subgraphs, including the experimen-
tal setup, quantitative comparisons, ablation studies, the
impact of the hyper-parameters, etc.

4.1. Experiment Setup

Baselines. We consider several representative methods that
are widely used in the literature (Li et al., 2022a; Fan et al.,
2022) as the baselines:

• GCN (Kipf & Welling, 2017): It follows the recursive
neighborhood aggregation scheme and is considered one
of the most popular GNNs.

• GIN (Xu et al., 2019): It is also one famous GNN and
has shown to be one of the most expressive GNNs in the
representation learning of graphs.

• FactorGCN (Yang et al., 2020): It is a representative
graph disentangling model for graph classification.

• DiffPool (Ying et al., 2018): It is a graph pooling method
that learns the cluster assignment for each node and
outputs the coarsened graph.

• LDD (Lee et al., 2021): It can learn debiased representa-
tions via disentangled feature augmentation, which is a
general debiasing method.

• DIR (Wu et al., 2022c): It generates multiple environ-
ments from biased graph data by conducting interven-
tions on graphs and further capturing invariant explain-
able subgraphs for predictions.

• DisC (Fan et al., 2022): It is a notable debiasing method
for GNNs, which aims to explicitly distinguish causal or
bias patterns from the input graphs.

Datasets. We consider five widely adopted datasets in the lit-
erature for comprehensive evaluations. First, following (Fan
et al., 2022; Dwivedi et al., 2023), we adopt three datasets,
i.e., CMNIST, CFashion, and CKuzushiji, which are con-
verted from image datasets using superpixels (Knyazev et al.,
2019), since they have controllable bias degrees and clear
human-understandable ground-truth invariant subgraphs for
evaluations. Specifically, for CMNIST, each graph is con-
verted from an image in MNIST (LeCun et al., 1998). The
task is to classify each graph into the corresponding hand-
written digit. And the spurious correlations are introduced
via colorizing the background based on the correlations with
the label. The degree of such correlation is controlled by
r. We consider datasets with biased r = {0.8, 0.9, 0.95}
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Table 1. Experimental results (%) of our method and baselines. The evaluation metric is accuracy for CMNIST, CFashion, and CKuzushiji,
and ROC-AUC for MOLSIDER and MOLHIV. ± denotes the standard deviation. The best results are in bold for each row. Our VIVACE
outperforms the baselines in all comparisons, indicating its superiority against graph distribution shifts.

Dataset Bias Methods
r GCN GIN FactorGCN DiffPool DIR LDD DisC VIVACE

CMNIST
0.8 50.43±4.13 57.75±0.78 72.30±1.18 73.79±0.02 9.98±0.33 64.95±1.22 82.60±0.93 82.71±0.74
0.9 28.97±4.40 36.78±5.55 62.35±5.07 66.45±0.78 9.96±0.23 56.65±2.18 78.14±2.14 79.46±1.87

0.95 13.50±1.38 16.04±1.14 42.50±4.91 47.12±1.04 10.03±0.27 46.83±2.88 63.47±5.65 64.72±4.61

CFashion
0.8 63.60±0.53 64.25±0.46 61.23±1.11 62.82±0.53 13.02±1.92 63.85±1.17 66.85±1.11 67.09±1.23
0.9 57.22±0.93 58.03±0.40 53.50±1.29 57.50±0.39 12.80±1.67 64.30±0.89 65.33±4.70 65.38±4.18

0.95 47.69±0.42 49.74±0.60 45.78±2.40 50.86±0.20 11.98±1.41 62.28±0.48 63.93±1.50 63.96±1.27

CKuzushiji
0.8 38.45±1.10 41.83±0.78 42.87±1.19 45.46±0.65 10.35±0.32 42.38±0.33 55.53±2.29 55.58±1.87
0.9 28.35±0.79 30.09±0.87 32.35±2.79 36.18±0.19 10.72±0.27 38.75±0.49 48.13±2.59 48.15±1.91

0.95 20.70±0.88 21.18±1.63 23.87±0.12 27.45±0.26 10.59±0.46 33.08±0.59 36.63±1.73 37.01±1.67

MOLSIDER 59.62±1.82 57.61±1.48 53.32±1.75 60.21±1.55 57.74±1.63 58.83±1.62 59.31±1.87 62.15±1.10

MOLHIV 76.13±1.01 75.63±1.41 57.18±1.54 76.32±1.48 77.05±0.57 76.91±1.81 76.97±1.03 78.11±0.82

for training and unbiased r for testing. We also adopt
similar strategies to construct CFashion and CKuzushiji
from Fashion-MNIST (Xiao et al., 2017) and Kuzushiji-
MNIST (Clanuwat et al., 2018) datasets. Also, we consider
two datasets, MOLSIDER and MOLHIV from Open Graph
Benchmark (Hu et al., 2020). The default split separates
structurally different molecules with different scaffolds into
different subsets, i.e., training/validation/testing sets. We
report the accuracy for CMNIST, CFashion, and CKuzushiji,
ROC-AUC for MOLSIDER and MOLHIV.

4.2. Experiment Results

The experimental results are reported in Table 1. We have
the following observations.

Our proposed VIVACE method consistently and signifi-
cantly outperforms the GNN backbones (i.e., GCN and
GIN) on the CMNIST, CFashion, and CKuzushiji datasets.
When compared with the graph disentangling method Fac-
torGCN or representative graph pooling method, our pro-
posed VIVACE also achieves substantial performance gains.
Besides, the representative graph invariant learning method
DIR achieves unsatisfactory prediction performances. It is
because DIR relies on datasets without severe bias to create
interventional distributions, so that the invariant patterns
captured by DIR are not accurate when this assumption is
not valid. The general debiasing method LDD and graph
debiasing method DisC show promising performance gains
upon the other baselines, but our VIVACE still performs
better than them in all comparisons. One plausible reason
is that they can not fully leverage the informative variant
patterns for capturing invariant subgraphs to achieve OOD
generalized predictions. Our method can capture accurate
invariant and variant subgraphs simultaneously by the mu-
tually promoted two modules respectively, i.e., variant sub-
graph contrastive estimation module and propensity score

based invariant subgraph prediction module, showing the
remarkable OOD generalization ability in practice.

As the degree of spurious correlations increases, namely r
grows larger, the performance of all the methods tends to
decrease since there exists a larger degree of distribution
shifts between testing and training graph data. Nevertheless,
our proposed VIVACE is able to keep the most relatively
stable performances, and demonstrates the effectiveness in
handling graph distribution shifts. When r increases from
0.8 to 0.95 on CFashion dataset, GCN drops by about 15%
accuracy, while our method with GCN as the backbone can
drop no more than 4%, which verifies that our method can
better capture the invariant and variant subgraphs, and thus
well handle distribution shifts.

We also conduct comparisons on more challenging and
large-scale OGB datasets. Since the molecules with dif-
ferent scaffolds are naturally split into different train-
ing/validation/testing sets, the generalization between
molecules with different scaffolds is difficult. Neverthe-
less, our proposed VIVACE also achieves improvements
upon the best results of the baselines. For example, VI-
VACE increases the ROC-AUC by 1.94% on MOLSIDER
and 1.06% on MOLHIV against the strongest baselines re-
spectively. Although the baseline DisC shows competitive
performances on CMNIST, CFashion, CKuzushiji, it fails
to achieve promising OOD generalization results on these
two more challenging OGB datasets. In contrast, VIVACE
achieves significant and consistent performance gains in all
comparisons, demonstrating its effectiveness against distri-
bution shifts.

Training Dynamics. In Figure 5 in Appendix, we plot the
loss and accuracy in the training process on CMNIST (r
= 0.9), while the results on the other datasets show similar
patterns. We can empirically observe the convergence of
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Figure 3. Ablation studies. ‘w/ GCNII’ and ‘w/ GIN’ denote adopt-
ing different backbones. ‘w/o Var.’ and ‘w/o IPW’ denote remov-
ing the variant subgraph contrastive module and inverse propensity
weighting module.

our proposed method. The loss and accuracy will converge
before reaching the maximal training epoch.

4.3. Ablation Study

We perform comprehensive ablation studies to further vali-
date the effectiveness of the key modules in our method.

• Variants ‘w/GCNII’ or “w/ GIN’ means that we re-
place the instantiation of the GNN components from
GCN (Kipf & Welling, 2017) to the other GNN back-
bone GCNII (Chen et al., 2020) or GIN (Xu et al., 2019).

• Variant ‘w/o Var.’ means that we remove the variant
subgraph contrastive estimation module and Variant ‘w/o
IPW’ further removes the inverse propensity weighting
module.

The results are obtained from the CMNIST (r = 0.9) dataset.
From Figure 3, we can first observe that our method is also
compatible with the other popular GNNs even with slight
performance improvements. By default, we use GCN (Kipf
& Welling, 2017) as the backbone GNN model. Although
the backbone GNN is replaced with GCNII or GIN model,
our VIVACE can keep relatively stable performances or
even achieve gains. Specifically, the generalization perfor-
mance further increases by 0.65% when using GIN as the
backbone that is a more expressive GNN.

Besides, the performance of the variants ‘w/o Var.’ and
‘w/o IPW’ drop drastically, indicating that it is important
to explicitly identify variant subgraphs and further estimate
their impact on the labels for the final goal of learning
invariant subgraphs for OOD generalization. If the spurious
correlations of all variant subgraphs with the labels are
treated equally, the accurate identification of the invariant
subgraphs will also be affected, leading to the unsatisfactory
OOD generalization performance.
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Figure 4. Sensitivity analysis for some important hyper-parameters
in our model. The red and grey lines denote the results of VIVACE
and the best result of all baselines, respectively. VIVACE achieves
better results with a wide range of hyper-parameter choices.

4.4. Hyper-parameter Sensitivity

We analyze the hyper-parameter sensitivity of our proposed
method in terms of the invariance regularizer coefficient α in
the variant subgraph contrastive estimation module and the
coefficient q that controls the degree of fitting the spurious
correlations in Eq. (7).

For simplicity, we only report the results on CMNIST (r =
0.9), while the results on other datasets show similar pat-
terns. In Figure 4, the red and grey lines denote the results
of VIVACE and the best result of all baselines, respectively.
The hyper-parameter α has an influence on the OOD gener-
alization performance, indicating that we need to properly
balance the self-supervised contrastive learning loss and
the invariance regularizer term. A small value may not be
sufficient to encourage the invariance among different en-
vironments effectively, while a very large value may affect
the self-supervised contrastive training. We also observe
the hyperparameter q has a moderate impact on the model
performance, verifying the significance to fit the spurious
correlations. Overall, although an appropriate choice of the
hyper-parameters can further achieve generalization perfor-
mance gains, our method is not sensitive to them and is
able to outperform the best baselines within a wide range of
hyper-parameters choices.

5. Related Works
In this section, we review the related works of graph neural
network, disentangled representation learning, and OOD
generalization.

Graph Neural Network. Graph data has been widely used
to model the complex relationships between different enti-
ties. In the field of graph machine learning, graph neural
networks (GNNs) (Kipf & Welling, 2017; Veličković et al.,
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2018; Li et al., 2023a; 2025; Chen et al., 2025), following
a message passing paradigm to iteratively update node rep-
resentations by the neighbors, have drawn ever-increasing
attention and achieved enormous success in various appli-
cations across wide-ranging applications. Graph-level pre-
diction task is one of the popular applications and can be
abstracted as one main branch in addition to the node-level
and link-level prediction tasks. The prediction of a graph
is generally based on its critical subgraph rather than the
whole input graph (Luo et al., 2020; Yu et al., 2021; Xuan
et al., 2019), where the critical subgraph is regarded as the
part that is truly predictive to the label in the task. There
are some works (Ying et al., 2018; Luo et al., 2020; Sun
et al., 2021; Monti et al., 2018) proposed to improve the
graph-level prediction performances by capturing the criti-
cal subgraph for learning graph representations effectively.
However, these methods are built upon the in-distribution
(I.D.)hypothesis and fail to generalize under distribution
shifts.

Disentangled Representation Learning. Disentangled rep-
resentation learning (DRL) (Wang et al., 2024) aims to learn
representations capable of identifying the underlying factors
behind the observable data (Zhang et al., 2024b; Wang et al.,
2022; Zhang et al., 2023a; Wang et al., 2025a). In addition
to its success in image and video (Wang et al., 2025b; Chen
et al., 2024b;a), DRL is also a promising direction in the
domain of graph neural network (Li et al., 2021b; 2022c;
Zhang et al., 2023c). For instance, DisenGCN (Ma et al.,
2019) is the pioneering approach in this area, introducing
a method to disentangle node representations by dynami-
cally extracting factors that contribute to the formation of
edges between a node and its neighbors. Building upon
this, IPGDN (Liu et al., 2020) not only separates the fac-
tors connecting nodes to their neighbors but also ensures
these factors to be independent. Both methods are guided
by supervision from downstream node classification tasks.
FactorGCN (Yang et al., 2020) further advances disentan-
gled learning by applying a factoring mechanism at the
input graph level. This approach disentangles input graph
to create distinct factors, which are subsequently treated
as separate graphs. However, their generalization abilities
under distribution shifts remain relatively underexplored.

Out-of-Distribution (OOD) Generalization. Most ma-
chine learning models rely on the assumption that testing
and training data are identically distributed. However, this
assumption can be easily violated due to the widely existing
but uncontrollable distribution shifts in the real world (Shen
et al., 2021; Du et al., 2022; Yang et al., 2023; Sui et al.,
2023). The performance will degenerate significantly if the
machine learning models do not have strong OOD general-
ization ability. Graph neural networks, as the most popular
models in the graph community recently, also face the same
obstacle. Considering the increasing demand for handling

in-the-wild unseen data (Feng et al., 2023), OOD general-
ization on graphs has drawn great attention (Li et al., 2022a;
Gui et al., 2022; Cai et al., 2024). Several famous works
are proposed to tackle this problem on graphs by learn-
ing subgraph backed by different theories or assumptions,
including causality (Wu et al., 2022c; Sui et al., 2022), in-
variant learning (Wu et al., 2022a; Li et al., 2022d; Yao
et al., 2024; Chen et al., 2024c; Zhang et al., 2023b), disen-
tanglement (Fan et al., 2022; Li et al., 2024; Zhang et al.,
2024a), information bottleneck (Miao et al., 2022). Differ-
ent from these works that output explainable or invariant
subgraphs under distribution shifts, some works directly
learn generalizable graph representations for the problems
where distribution shifts exist on graph size (Bevilacqua
et al., 2021; Buffelli et al., 2022) or the other structural
patterns (Wu et al., 2024). And the learned representations
are expected to remain invariant across different environ-
ments. For capturing invariant subgraphs, most of them
heavily rely on the predefined or automatically generated
environment labels, i.e., multiple training environments to
specify the variant information, and further learn invariant
subgraphs. However, the environment labels are unavail-
able and directly generating environment labels during the
training process is also impractical, leading to inaccurate
modeling for the variant patterns and the estimation of the
degree of the spurious correlations. Some of them rely on
the strong causality assumptions that are hardly guaranteed
to hold true all the time in real-world scenarios. How to
explicitly estimate the impact of environment-related variant
information and further eliminate the spurious correlations
remains largely unexplored.

6. Conclusion
In this paper, we study learning invariant subgraph via self-
supervised contrastive variant subgraph estimation, which
can well handle graph distribution shifts with severe bias
for OOD generalization. We find that the variance infor-
mation behind graph data is also important and should not
be directly ignored but be explicitly captured. We propose
a novel VIVACE model, which consists of three tailored
modules, i.e., invariant and variant subgraph identification
module, variant subgraph contrastive estimation module,
and inverse propensity weighting based invariant subgraph
prediction module. The main technical contribution lies
in that we design self-supervised contrastive learning on
variant subgraphs to explicitly model the degree of the spu-
rious correlations and further design the inverse propensity
weighting strategy to reweight the invariant subgraph pre-
dictions to eliminate the spurious correlations for OOD
generalization. We conduct extensive experiments on sev-
eral graph classification benchmark datasets. The results
demonstrate the superiority of our proposed method over
state-of-the-art baselines against distribution shifts.
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A. Notations
For better clarifications, we first summarize the key notations in the proposed method and the corresponding descriptions in
Table 2.

Table 2. The summary of the key notations and the corresponding descriptions.

Notation Description

N The number of graphs
G The input graph
X,A The node feature and adjacency matrix
Φ The invariant subgraph generator
GI = Φ(G) The invariant subgraph of G
GV = G\GI The variant subgraph of G
M The learnable edge mask matrix
fI/fV The invariant/variant subgraph predictor
hV The variant subgraph encoder
wV The variant subgraph classifier
ℓ The loss function
|Y | The number of different labels

B. Proof of Theorem 1
Proof. Denote the first contrastive loss term of Eq. (5) as:

Lssl =
1

|Y |

|Y |∑
k=1

ℓssl(Φ, hV ; k) =
1

|Y |

|Y |∑
k=1

− 1

Tk

∑
yi=k

log
exp

(
ϕ
(
hV (GV,i), hV (G

′
V,i)

))
∑

yj=k exp
(
ϕ
(
hV (GV,i), hV (G′

V,j)
)) . (13)

Denote the second variance term of Eq. (5) as:

Lvar = Var (ℓssl(Φ, hV ; k)) , k = 1, . . . , |Y |. (14)

⇐: To prove the optimal invariant subgraph generator Φ∗ can minimize the contrastive loss Lssl, i.e.,

Φ∗ = argmin
Φ

Lssl, (15)

we assume there exists another Φ′ ̸= Φ∗, where the input graph G is disentangled into G = (G′
I , G

′
V ) and

Lssl(Φ
′) < Lssl(Φ

∗). (16)

This implies that G′
V includes the ground-truth invariant subgraph information, i.e.,

G′
V ∩G∗

I = G′
V ∩ (G\G∗

V ) ̸= ∅. (17)

Therefore, the contrastive loss ℓssl(Φ, hV ; k) among the environments partitioned by the graph label k = 1, . . . , |Y | is
dependent on the graph label itself, i.e.,

∃ k1, k2 ∈ {1, . . . , |Y |}, k1 ̸= k2, such that ℓssl(Φ′, hV ; k1) ̸= ℓssl(Φ
′, hV ; k2). (18)

Thus,
Lvar(Φ

′) = Var(ℓssl(Φ, hV ; k)) > 0, k = 1, . . . , |Y |. (19)

However, G∗
V excludes all the ground-truth invariant information that is sufficiently predictive to the graph label. We have

ℓssl(Φ
∗, hV ; k = 1) = ℓssl(Φ

∗, hV ; k = 2) = · · · = ℓssl(Φ
∗, hV ; k = |Y |), (20)
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i.e.,
Lvar(Φ

∗) = Var (ℓssl(Φ
∗, hV ; k)) = 0, k = 1, . . . , |Y |. (21)

Thus,
Lvar(Φ

′) > Lvar(Φ
∗), (22)

which contradicts the assumption that the variance term Lvar is minimized. Therefore, we prove that the optimal invariant
subgraph generator Φ∗ minimizes the contrastive loss Lssl.

⇒: To prove that minimizing the contrastive loss Lssl implies Φ = Φ∗, i.e., the uniqueness of Φ∗, assume there exists
another invariant subgraph generator Φ′ ̸= Φ∗ derived by minimizing Lssl, where G = (G′

I , G
′
V ) and

Φ′ = argmin
Φ

Lssl. (23)

Since Lssl is minimized, G′
V preserves all the intrinsic features of the ground-truth variant subgraph, i.e.,

G∗
V ⊆ G′

V . (24)

Meanwhile, because the second variance term Lvar is minimized across graph label partitions k = 1, . . . , |Y |, only
ground-truth variant patterns can be included in G′

V , i.e.,

G′
V ⊆ G∗

V . (25)

Therefore,
G′

V = G∗
V ⇒ Φ′ = Φ∗. (26)

Thus, we conclude that there exists a unique Φ∗ that minimizes the first contrastive loss term of Eq. (5).

C. Additional Experimental Details
C.1. Datasets

The datasets are publicly available as follows:

• CMNIST: http://yann.lecun.com/exdb/mnist/ with license unspecified

• CFashion: https://github.com/zalandoresearch/fashion-mnist with MIT License

• CKuzushiji: https://github.com/rois-codh/kmnist with CC BY-SA 4.0 License

• MOLSIDER: https://ogb.stanford.edu/docs/graphprop/ with MIT License

• MOLHIV: https://ogb.stanford.edu/docs/graphprop/ with MIT License

C.2. Implementations

We use GCN (Kipf & Welling, 2017) as the backbone GNN model. The hyper-parameter q in Eq. (7) is 0.7. We adopt the
Adam optimizer (Kingma & Ba, 2014). Note that we adopt the default hyperparameter settings following (Fan et al., 2022)
for a fair comparison. We report the mean values with standard deviations of four repeated experiments.

All the experiments are conducted with:

• Operating System: Ubuntu 18.04.1 LTS

• CPU: Intel(R) Xeon(R) CPU E5-2699 v4@2.20GHz

• GPU: NVIDIA GeForce GTX TITAN Xp with 12GB of Memory

• Software: Python 3.6.5; NumPy 1.19.2; PyTorch 1.10.1; PyTorch Geometric 2.0.3 (Fey & Lenssen, 2019)
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Figure 5. The training dynamics on CMNIST (r = 0.9). We can observe the convergence of our proposed method in practice.

D. Training Dynamics
We present the loss and accuracy during the training process on the CMNIST dataset (r = 0.9) in Figure 5. Similar trends
are observed across other datasets. The results empirically demonstrate the convergence of our proposed method, with both
the loss and accuracy stabilizing well before the maximum training epoch is reached.

E. Limitations
A potential limitation is that we only focus on OOD generalized prediction tasks on static and homogenous graphs, which are
most common in the graph learning community. It is worth exploring to extend this work into dynamic and heterogeneous
graphs in future.
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